An Efficient One-Pot Synthesis of Triamides and Amidodiesters*

A. Shaabani ${ }^{1}$, M. B. Teimouri ${ }^{1}$, and H. R. Bijanzadeh ${ }^{2}$
${ }^{1}$ Department of Chemistry, Shahid Beheshti University, 1983963113 Tehran, Iran
fax: +(9821)2403041; e-mail: a-shaabani@cc.sbu.ac.ir
${ }^{2}$ Department of Chemistry, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran

Received April 23, 2003

Abstract

An efficient one-pot procedure has been proposed for the synthesis of compounds containing three carboxamide groups or one carboxamide and two ester groups. The procedure is based on three-component condensation of alkyl isocyanides with 5-alkylidene- or 5-arylmethylene-substituted Meldrum's acids in the presence of such nucleophiles as phenols and amines.

In the recent years, chemistry of 5-alkylidene- and 5-arylmethylene-substituted Meldrum's acid derivatives has attracted much attention owing to their potential synthetic utility and diversity of reactions [1, 2]. These compounds are useful intermediates in cycloaddition reactions not only as good dienophiles but also as good oxy-dienes in hetero-Diels-Alder reactions [3-6]. In continuation of our recent studies on $[1+4]$-cycloadditions of isocyanides to activated $\alpha, \beta-$ unsaturated carbonyl compounds which are capable of adopting a cisoid configuration [7-12], the present communication reports on reactions of alkyl isocyanides I with 5-methoxymethylene- and 5-(4-nitro-benzylidene)-substituted Meldrum's acids as electrondeficient oxy-dienes in the presence of phenols and amines as nucleophiles. We found that these reactions occur under mild conditions (at room temperature) in the absence of a catalyst to afford highly functionalized triamides and amidodiesters. The products and their derivatives can find application in various
fields, such as complex formation with metals [13-17] and pharmaceutical chemistry $[18,19]$.

Three-component condensation of alkyl isocyanides I with compounds II in the presence of phenols III in methylene chloride at room temperature gave amdodiesters IV in fairly high yields (Scheme 1). The formation of compounds IV follows from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the crude products. No other compounds were detected in the reaction mixtures by NMR spectroscopy. The structure of compounds IVaIVf was deduced from their elemental analyses and IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The mass spectra of IVa-IVf displayed the molecular ion peaks with appropriate m / z values. The ${ }^{1} \mathrm{H}$ NMR spectrum of IVa contained a signal at $\delta 1.26 \mathrm{ppm}$ from the tert-butyl group and signals at $\delta 4.31$ and $4.76 \mathrm{ppm}(A X$ system, $J_{A X}=11.3 \mathrm{~Hz}$) from the two CH protons. The NH proton resonates at $\delta 5.54 \mathrm{ppm}$, and signals in the δ range from 6.69 to 8.24 ppm belong to the aromatic protons. In the proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum

Scheme 1.

[^0][^1]Scheme 2.

$\mathrm{I}, \mathrm{R}=t$ - $\mathrm{Bu}(\mathbf{a})$, cyclohexyl (b); III, $\mathrm{Ar}=\mathrm{Ph}(\mathbf{c}), 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{d}), 4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{e}), 1$-naphthyl (f); $\mathbf{V}, \mathrm{R}=t$ - $\mathrm{Bu}, \mathrm{Ar}=\mathrm{Ph}(\mathbf{a}) ; \mathrm{R}=$ cyclohexyl, $\mathrm{Ar}=\mathrm{Ph}(\mathbf{b}) ; \mathrm{R}=t-\mathrm{Bu}, \mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{c}) ; \mathrm{R}=$ cyclohexyl, $\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{d}) ; \mathrm{R}=t-\mathrm{Bu}, \mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{e})$; $\mathrm{R}=$ cyclohexyl, $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{f}) ; \mathrm{R}=t-\mathrm{Bu}, \mathrm{Ar}=1$-naphthyl $(\mathbf{g}) ; \mathrm{R}=$ cyclohexyl, $\mathrm{Ar}=1$-naphthyl (\mathbf{h}).
of IVa we observed 19 distinct signals in agreement with the assumed structure. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds IVb-IVf were similar to those obtained for IVa, except for signals from the alkylamino group (R), ester groups, and R^{\prime} which exhibited characteristic signals with appropriate chemical shifts.

Treatment of alkyl isocyanides I with 5-(4-nitro-benzylidene)-substituted Meldrum's acid IIa in the presence of amines at room temperature gave N^{2}-alkyl-2-(4-nitrophenyl)- $\mathrm{N}^{1}, \mathrm{~N}^{1}$-diaryl-1,1,2-ethanetricarboxamides \mathbf{V} in high yields (Scheme 2). The ${ }^{1} \mathrm{H}$ NMR spectrum of Va contained a narrow singlet at $\delta 1.28 \mathrm{ppm}$, which was readily recognized as arising from the tert-butyl group and an $A X$ pattern ($J_{A X}=$ 8.1 Hz) from the two methine protons at $\delta 4.42$ and 4.79 ppm . A broadened singlet ($\delta 7.96 \mathrm{ppm}$) was observed for the NH group attached to $t-\mathrm{Bu}$, and protons of the phenyl ring appeared as multiplets in the aromatic region ($\delta 7.03-7.78 \mathrm{ppm}$). Two PhNH protons gave a broad singlet at $\delta 9.98 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of Va (recorded with decoupling from protons) consists of 18 distinct signals, in agreement with the assigned structure. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{V b}-\mathbf{V e}, \mathbf{V g}$, and $\mathbf{V h}$ were similar to those obtained for Va, except for signals from the alkyl and aryl groups on the nitrogen atoms. We failed to record ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{V f}$ because of its poor solubility.

Under analogous conditions, the reaction of 5-methoxymethylene-2,2-dimethyl-1,3-dioxane-4,6-dione (IIb) with alkyl isocyanides I in the presence of aniline afforded the corresponding 5-phenylaminomethylene derivative IIc ($\mathrm{R}^{\prime}=\mathrm{PhNH}$) (Scheme 3). This result may be interpreted in terms of highly electron-rich nature of the oxy-diene system in IIc, which hampers its subsequent reaction at the electronrich carbon atom of isocyanide.

Scheme 4 shows a possible mechanism of the above reactions. Taking into account that compound IIc, being an electron-rich heterodiene, failed to react with isocyanides, the first step of the process may be $[1+4]$-cycloaddition of alkyl isocyanide to electrondeficient heterodiene II with formation of iminolactone intermediate VI. The subsequent reaction of VI with nucleophile according to pathway a or b results in formation of the same product IV or \mathbf{V}.

In summary, the reactions of 5-arylmethylene- and 5-methoxymethylene-substituted Meldrum's acids with alkyl isocyanides in the presence of phenols and amines smoothly occur under mild conditions in the absence of a catalyst to afford the corresponding 1,1,2-ethanetricarboxamides and diaryl carbamoylmethylmalonates in high yields. The proposed procedure offers a convenient alternative to multistep approaches [20]. The products attract interest as potential polyfunctional ligands for organometallic chemistry.

Scheme 3.

Scheme 4.

EXPERIMENTAL

The melting points were determined on an Electrothermal 9100 apparatus and are uncorrected. The elemental analyses were obtained using a Heraeus CHN-O-Rapid analyzer. The mass spectra (70 eV) were recorded on a Finnigan MAT-8430 mass spectrometer. The IR spectra were obtained on a Shimadzu IR-470 spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker DRX-500 Avance instrument at 500.13 and 125.77 MHz , respectively, using CDCl_{3} or DMSO- d_{6} as solvent. The chemicals used in this work were purchased from Fluka (Buchs, Switzerland). 2,2-Dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6-dione (IIa) and 5-methoxymethylene-2,2-dimethyl-1,3-dioxane-4,6-dione (IIb) were synthesized by the procedures described in [21,22].

Diphenyl 2-[2-tert-butylamino-1-(4-nitrophenyl)-

 2-oxoethyl]malonate (IVa). A solution of 0.084 g (1 mmol) of tert-butyl isocyanide ($\mathbf{I a}$) in 2 ml of methylene chloride was added dropwise over a period of 10 min to a solution of $0.280 \mathrm{~g}(1 \mathrm{mmol})$ of 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6dione (IIa) and $0.197 \mathrm{~g}(2.1 \mathrm{mmol})$ of phenol (IIIa) in 15 ml of methylene chloride under stirring (with a magnetic stirrer) at $0^{\circ} \mathrm{C}$. The mixture was allowed towarm up to room temperature and was stirred for 5 h . The solution was concentrated, and the colorless crystalline product was filtered off and recrystallized from methylene chloride-hexane, 1:1. Yield 0.420 g (85%), $\mathrm{mp} 163-164^{\circ} \mathrm{C}$. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3380$ (NH) ; 1759, 1730, 1672 (C=O); 1519, $1340\left(\mathrm{NO}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right), \delta$, ppm: 1.26 s $\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 4.31 \mathrm{~d}$ and $4.76 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $11.25 \mathrm{~Hz}), 5.54 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH}), 6.69-7.42 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.69 d and $8.24 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2},{ }^{3} J_{\mathrm{HH}}=6.95 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$, δ_{C}, ppm: 28.49 $\left(\mathrm{CMe}_{3}\right) ; 52.02\left(\mathrm{CMe}_{3}\right) ; 52.53,55.27(\mathrm{CH}) ; 120.80$, 121.20, 124.18, 126.47, 126.52, 129.45, 129.60, 129.63, 143.29, 147.85, 149.86, 150.41 ($\mathrm{C}_{\text {arom }}$); 165.87, 166.26, 168.45 (CO). Mass spectrum, m / z, ($I_{\text {rel }}, \%$): $588 M^{+}(10), 345$ (43), 221 (35), 176 (40), 144 (100), 57 (64). Found, \%: C 65.98; H 5.31; N 5.60. $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$. Calculated, \%: C 66.10; H 5.34; N 5.71. M 490.55.

Compounds IVb-IVf were synthesized in a similar way.

Diphenyl 2-[2-cyclohexylamino-1-(4-nitro-phenyl)-2-oxoethyl]malonate (IVb). Colorless crystals. Yield $0.440 \mathrm{~g}(85 \%)$, mp $168-169^{\circ} \mathrm{C}$. IR spectrum (KBr), v, cm ${ }^{-1}: 3315(\mathrm{NH}) ; 1750,1637$ (CO); 1506,
$1338\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right), \delta$, ppm: $1.05-1.69 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70 \mathrm{~m}(1 \mathrm{H}, \mathrm{NCH})$, 4.35 d and $4.81 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 5.55 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{NH},{ }^{3} J_{\mathrm{HH}}=8.00 \mathrm{~Hz}\right), 6.68-7.42 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.69 d and $8.24 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2},{ }^{3} J_{\mathrm{HH}}=8.50 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right), \delta, \mathrm{ppm}: 24.64$, 24.69, 25.32, 32.54, $32.70\left(\mathrm{CH}_{2}\right) ; 49.08(\mathrm{NCH}) ; 52.00$, 55.16 (CH); 120.78, 121.20, 124.16, 126.48, 126.53, 129.61, 129.63, 143.09, 147.87, 149.85, 150.37 (Carom); 165.81, 166.21, 168.32 (CO). Mass spectrum, $\mathrm{m} / \mathrm{z}\left(I_{\mathrm{rel}}, \%\right): 517[M+\mathrm{H}]^{+}(3), 424$ (27), 329 (13), 247 (18), 176 (22), 94 (100). Found, \%: C 66.75; H 5.56; N 5.45. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$. Calculated, \%: C 67.42; H 5.46; N.42. M 516.59.

Bis(3-nitrophenyl) 2-[2-tert-butylamino-1-(4-nitrophenyl)-2-oxoethyl]malonate (IVc). Yellow crystals. Yield $0.468 \mathrm{~g}(80 \%), \mathrm{mp} 175-176^{\circ} \mathrm{C}$. IR spectrum $(\mathrm{KBr}), v, \mathrm{~cm}^{-1}: 3310(\mathrm{NH}) ; 1749,1674(\mathrm{CO}) ; 1532$, $1351\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $1.18 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 4.66 \mathrm{~d}$ and $4.86 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=\right.$ $10.5 \mathrm{~Hz}), 7.37 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{NH},{ }^{3} J_{\mathrm{HH}}=8.17 \mathrm{~Hz}\right), 7.53-$ $8.29 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), $\delta_{\mathrm{C}}, \mathrm{ppm}: 28.60\left(\mathrm{CMe}_{3}\right) ; 51.11\left(\mathrm{CMe}_{3}\right) ; 51.55,54.68$ (CH); 117.01, 117.34, 122.02, 124.06, 124.23, 128.69, 124.84, 129.33, 130.14, 131.66, 131.74, 144.76, $147.05,147.98,148.68,148.84,150.08,150.64$ $\left(\mathrm{C}_{\text {arom }}\right) ; 165.81,165.97,168.75(\mathrm{CO})$. Mass spectrum, $m / z\left(I_{\mathrm{rel}}, \%\right): 580 M^{+}(2), 479$ (8), 442 (10), 303 (15), 277 (35), 221 (50), 176 (25), 139 (90), 57 (100). Found, \%: C 56.03; H 4.27; N 9.81. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{11}$. Calculated, \%: C 55.85; H 4.16; N 9.65. M 580.57.

Bis(3-nitrophenyl) 2-[2-cyclohexylamino-1-(4-nitrophenyl)-2-oxoethyl]malonate (IVd). Yellow crystals. Yield $0.496 \mathrm{~g}(81 \%)$, mp $151-152^{\circ} \mathrm{C}$. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3285(\mathrm{NH}) ; 1771,1750$, $1672(\mathrm{C}=\mathrm{O}) ; 1527,1349\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $1.05-1.73 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{NCH}), 4.63 \mathrm{~d}$ and $4.91 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=1.1 \mathrm{~Hz}\right)$, $7.20 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{NH},{ }^{3} J_{\mathrm{HH}}=8.15 \mathrm{~Hz}\right), 7.42-8.21 \mathrm{~m}(12 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ, ppm: 24.81, 24.89, 25.34, 32.52, $32.76\left(\mathrm{CH}_{2}\right) ; 45.39(\mathrm{NCH}) ; 48.31$ and $51.59(\mathrm{CH}) ; 110.04,114.27,117.48,121.38$, 122.87, 124.09, 124.22, 129.12, 129.41, 129.93, 131.09, 131.45, 146.24, 147.11, 147.26, 147.76, 148.73, 149.16 ($\mathrm{C}_{\text {arom }}$); 169.80, 170.09, $176.30(\mathrm{C}=\mathrm{O})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 606 M^{+}$(3), 506 (5), 303 (37), 221 (854), 166 (25), 150 (51), 55 (100). Found, \%: C 58.46; H 5.00; N 9.20. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{11}$. Calculated, \%: C 57.42; H 4.32; N 9.23. M 606.61.

Diphenyl 2-[2-tert-butylamino-1-methoxy-2-oxoethyl]malonate (IVe). Red oily substance. Yield
0.295 g (74%). IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3370$ (NH); 1750, 1691 (C=O). ${ }^{1} \mathrm{H}$ NMR spectrum (CDCl_{3}, $\left.\mathrm{Me}_{4} \mathrm{Si}\right), \delta, \mathrm{ppm}: 1.36 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 3.52 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.47 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}, A B\right.$ system, $\left.{ }^{3} J_{\mathrm{HH}}=4.4 \mathrm{~Hz}\right)$, $6.49 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH}), 6.83-7.42 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right), \delta_{\mathrm{C}}, \mathrm{ppm}: 28.60\left(\mathrm{CMe}_{3}\right)$; $50.90\left(\mathrm{CMe}_{3}\right) ; 55.12\left(\mathrm{OCH}_{3}\right) ; 59.96(\mathrm{CH}) ; 78.71$ (OCH); 114.69, 120.11, 121.37, 121.40, 126.88, 126.95, 127.13, 129.33, 130.04, 151.26, 151.73, $155.10\left(\mathrm{C}_{\text {arom }}\right)$; 165.22, 165.93, $169.20(\mathrm{C}=\mathrm{O})$. Mass spectrum, m / z ($I_{\text {rel }}, \%$): $400 M^{+}$(10), 368 (31), 338 (17), 275 (22), 247 (15), 217 (28), 124 (33), 94 (100), 57 (95). Found, \%: C 66.33; H 6.21; N 3.61. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calculated, \%: C 66.14; H 6.30; N 3.50. M 399.48.

Diphenyl 2-[2-cyclohexylamino-1-methoxy-2oxoethyl]malonate (IVf). Red oily substance. Yield $0.303 \mathrm{~g}(71 \%)$. IR spectrum (KBr), $\mathrm{v}, \mathrm{cm}^{-1}: 3355$ $(\mathrm{NH}), 1748,1695(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right), \delta$, ppm: $1.10-1.89 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.61 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81 \mathrm{~m}(1 \mathrm{H}, \mathrm{NCH}), 4.52 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}$, $A B$ system, $\left.{ }^{3} J_{\mathrm{HH}}=4.25 \mathrm{~Hz}\right), 6.25 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{NH},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.50 \mathrm{~Hz}), 6.82-7.37 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$, δ, ppm: 24.64, 24.77, 25.38, 32.75, $32.94\left(\mathrm{CH}_{2}\right) ; 48.23(\mathrm{NCH}) ; 54.55\left(\mathrm{OCH}_{3}\right)$; 60.10 (CH); 79.68 (OCH); 115.47, 119.86, 121.35, 121.37, 126.28, 126.30, 129.42, 129.52, 150.42, 150.48, 156.54 ($\mathrm{C}_{\text {arom }}$); 164.91, 165.76, 168.39 (CO). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 426 M^{+}(7), 364$ (24), 332 (33), 300 (25), 270 (42), 238 (35), 156 (60), 117 (29), 94 (100), 83 (41). Found, \%: C 67.03; H 6.11; N 3.49. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}$. Calculated, \%: C 67.74; H 6.39; N 3.29. M 425.52.
N^{2}-tert-Butyl-2-(4-nitrophenyl)- N^{1}, N^{1}-diphenyl-1,1,2-ethanetricarboxamide (Va). A solution of 0.084 g (1 mmol) of tert-butyl isocyanide $\mathbf{I a}$ in 2 ml of methylene chloride was added dropwise over a period of 10 min to a solution of $0.280 \mathrm{~g}(1 \mathrm{mmol})$ of 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6dione (IIa) and 2 ml of aniline (IIIc) in 15 ml of methylene chloride under stirring (magnetic stirrer) at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm up to room temperature and was stirred for 5 h . The solution was concentrated, and the colorless crystalline product was filtered off and washed with diethyl ether. Yield $0.440 \mathrm{~g}(90 \%)$, mp $300-301^{\circ} \mathrm{C}$ (decomp.). IR spectrum $(\mathrm{KBr}), \mathrm{v}, \mathrm{cm}^{-1}: 3305(\mathrm{NH}) ; 1672,1632,1603(\mathrm{C}=\mathrm{O})$; 1510, $1349\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO-d d_{6}), δ, ppm: $1.21 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 4.42 \mathrm{~d}$ and $4.79 \mathrm{~d}(2 \mathrm{H}$, $\mathrm{CH},{ }^{3} J_{\mathrm{HH}}=8.13 \mathrm{~Hz}$), 7.96 br.s ($1 \mathrm{H}, t$-BuNH), $7.03-$ $8.20\left(14 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 9.98 \mathrm{~s}(2 \mathrm{H} \mathrm{PhNH}) .{ }^{13} \mathrm{C}$ NMR
spectrum (DMSO- d_{6}), δ_{C}, ppm: $28.23\left(\right.$ CMe $\left._{3}\right) ; 50.21$ $\left(\mathrm{CMe}_{3}\right) ; 50.60$ and $58.04(\mathrm{CH}) ; 119.21,123.08$, 123.47, 123.63, 128.50, 128.63, 129.33, 138.24, 138.69, 146.34, $146.51\left(\mathrm{C}_{\text {arom }}\right) ; 164.71,165.30,169.63$ (CO). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 488 M^{+}(3), 396$ (15), 340 (10), 323 (13), 295 (20), 269 (53), 176 (17), 130 (15), 93 (100), 77 (25), 57 (64). Found, \%: C 66.06; H. 5.49; N. 11.31. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C 66.37; H.77; N 11.46. M 488.57.
N^{2}-Cyclohexyl-2-(4-nitrophenyl)- N^{1}, N^{1}-diphenyl-1,1,2-ethanetricarboxamide ($\mathbf{V b}$). Colorless crystals. Yield 0.476 g (92%), mp $304-305^{\circ} \mathrm{C}$ (decomp.). IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3270(\mathrm{NH}) ; 1668,1660$, 1627 (C=O); 1514, $1345\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $0.93-1.62 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{NCH}), 4.37 \mathrm{~d}$ and $4.65 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right)$, 6.98-8.16 m ($14 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $8.21 \mathrm{~s}(1 \mathrm{H}, \mathrm{CyNH})$, 9.83 s and $9.92 \mathrm{~s}(2 \mathrm{H}, \mathrm{PhNH}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 24.73, 24.80, 25.58, 32.37, $32.63\left(\mathrm{CH}_{2}\right) ; 48.15(\mathrm{NCH}) ; 50.52,58.23(\mathrm{CH})$; 119.63, 119.69, 123.81, 124.17, 124.33, 129.25, 129.93, 138.61, 139.06, 146.52, 147.05 ($\mathrm{C}_{\text {arom }}$); 165.15, 65.73, $169.68(\mathrm{CO})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 515[M+\mathrm{H}]^{+}$ (3), 410 (5), 346 (2), 283 (30), 107 (100), 93 (44). Found, \%: C 67.29; H 5.89; N 10.82. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C 67.68; H 5.87; N 10.88. M 514.61.
N^{2}-(tert-Butyl)- $N^{1}, N^{1}, 2$-tris(4-nitrophenyl)-1,1,2ethanetricarboxamide (Vc). Colorless crystals. Yield $0.468 \mathrm{~g}(81 \%), \mathrm{mp} 267-268^{\circ} \mathrm{C}$ (decomp.). IR spectrum (KBr), v, cm ${ }^{-1}$: $3292(\mathrm{NH}) ; 1687,1630(\mathrm{C}=\mathrm{O}) ; 1508$, $1348\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $1.10 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 4.39 \mathrm{~d}$ and $4.68 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=\right.$ $11.25 \mathrm{~Hz}), 7.61$ t.d and 8.24 t.d $\left(12 \mathrm{H}, \mathrm{H}_{\text {arom }},{ }^{3} J_{\mathrm{HH}}=\right.$ $9 \mathrm{~Hz}), 8.02 \mathrm{~s}(1 \mathrm{H}, t-\mathrm{BuNH}), 10.43 \mathrm{~s}$ and $10.59 \mathrm{~s}(2 \mathrm{H}$, NH). ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 28.64 $\left(\mathrm{CMe}_{3}\right) ; 50.74\left(\mathbf{C M e}_{3}\right) ; 51.23,58.81(\mathrm{CH}) ; 119.73$, $123.86,125.33,125.51,129.93,143.10,143.18$, $144.45,145.05,146.02,147.12$ ($\mathrm{C}_{\text {arom }}$); 165.93, 166.35, 169.77 (C=O). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right)$: $579[M+\mathrm{H}]^{+}$(2), 384 (27), 277 (17), 220 (48), 176 (50), 138 (99), 57 (100). Found, \%: C.73; H 4.55; N 14.23. $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{9}$. Calculated, \%: C 56.04; H 4.52; N 14.52. M578.59.
N^{2}-Cyclohexyl- $N^{1}, N^{1}, 2$-tris(4-nitrophenyl)-1,1,2ethanetricarboxamide (Vd). Colorless crystals. Yield 0.492 g (82%), mp $270-272^{\circ} \mathrm{C}$ (decomp.). IR spectrum (KBr), v, cm ${ }^{-1}$: 3345 (NH); 1688, 1661 (C=O); 1505, $1343\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $\left.d_{6}\right), \delta$, ppm: $0.91-1.63 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39 \mathrm{~m}(1 \mathrm{H}, \mathrm{NCH}), 4.45 \mathrm{~d}$ and $4.66 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 7.60-8.246 \mathrm{~d}$
$\left(12 \mathrm{H}, \mathrm{H}_{\text {arom }},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}\right), 8.11 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CyNH},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.8 \mathrm{~Hz}), 10.39 \mathrm{~s}$ and $10.62 \mathrm{~s}(2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 24.71, 24.78, 25.55, 32.32, $32.59\left(\mathrm{CH}_{2}\right) ; 48.25(\mathrm{NCH}) ; 50.72,58.63(\mathrm{CH})$; 119.74, 123.89, 125.34, 125.52, 130.01, 143.13, $143.22,144.40,144.99,145.77,147.17$ ($\mathrm{C}_{\text {arom }}$); 165.86, 166.30, 169.37 (C=O). Mass spectrum, m / z ($\left.I_{\text {rel }}, \%\right): 604 M^{+}(2), 466$ (21), 346 (21), 302 (54), 221 (55), 176 (41), 138 (100), 108 (97). Found, \%: C 57.75; H 4.81; N 14.02. $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{9}$. Calculated, \%: C 57.60; H 4.66; N 13.89. M 604.63.
N^{2}-tert-Butyl- N^{1}, N^{1}-bis(4-methylphenyl)-2-(4-nitrophenyl)-1,1,2-ethanetricarboxamide (Ve). Colorless crystals. Yield 0.440 g (85%), mp 316$317^{\circ} \mathrm{C}$. IR spectrum (KBr), $\mathrm{v}, \mathrm{cm}^{-1}: 3260(\mathrm{NH}) ; 1688$, 1672, 1637 ($\mathrm{C}=\mathrm{O}$); 1511, $1348\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), $\delta, \mathrm{ppm}: 1.10 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, 1.92 s and $2.01 \mathrm{~s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.21$ and $4.63 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{CH},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right), 7.00-8.15 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.95 \mathrm{~s}$ ($1 \mathrm{H}, t$-BuNH), $9.77 \mathrm{~s}(2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 15.64, $20.91\left(\mathrm{CH}_{3}\right) ; 28.70$ (CMe_{3}); 50.21 (CMe_{3}); 51.08, 58.42 (CH); 119.71, 123.75, 128.46, 128.51, 129.16, 129.55, 129.70, $129.88,133.01,133.21,133.40,133.46,136.25$, 136.67, 146.80, 147.07 ($\mathrm{C}_{\text {arom }}$); 165.25, 165.67, 170.10 (CO). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 516 M^{+}(15), 410$ (19), 337 (23), 283 (88), 176 (24), 107 (100), 57 (79). Found, \%: C 67.60; H 6.31; N 10.96. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C 67.42; H 6.24; N 10.84. M 516.63.
N^{2}-Cyclohexyl- N^{1}, N^{1}-bis(4-methylphenyl)-2-(4-nitrophenyl)-1,1,2-ethanetricarboxamide (Vf). Colorless crystals. Yield 0.472 g (87%), mp 319$320^{\circ} \mathrm{C}$ (decomp.). IR spectrum (KBr), $\mathrm{v}, \mathrm{cm}^{-1}: 3420$, 3255 (NH); 1686, 1664, 1642 (C=O); 1508, 1344 $\left(\mathrm{NO}_{2}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 542 M^{+}(15), 436$ (39), 329 (55), 283 (20), 107 (100). Found, \%: C 68.71; H 6.34; N 10.34. $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C.61; H 6.31; N 10.32. M 542.66. We failed to record ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Vf because of its poor solubility.
N^{2}-(tert-Buty)- N^{1}, N^{1}-bis(1-naphthyl)-2-(4-nitro-phenyl)-1,1,2-ethanetricarboxamide (Vg). Pink crystals. Yield $0.488 \mathrm{~g}(83 \%), \mathrm{mp} 290-291^{\circ} \mathrm{C}$. IR spectrum (KBr), v, $\mathrm{cm}^{-1}: 3270(\mathrm{NH}) ; 1674,1658,1634(\mathrm{C}=\mathrm{O})$; 1514, $1344\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $1.19 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{CMe}_{3}\right), 4.78 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}, A B$ system, $\left.{ }^{3} J_{\mathrm{HH}}=11.45 \mathrm{~Hz}\right), 7.29-8.33 \mathrm{~m}\left(18 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.05 \mathrm{~s}$ $(1 \mathrm{H}, t-\mathrm{BuNH}), 10.01 \mathrm{~s}$ and $10.06 \mathrm{~s}(2 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 28.80 $\left(\mathrm{CMe}_{3}\right) ; 50.73\left(\mathrm{CMe}_{3}\right) ; 51.52$ and $57.64(\mathrm{CH}) ; 122.41$,
$122.52,122.58,123.18,126.01,126.14,126.52$, $126.59,126.68,128.29,128.65,128.71,130.24$, $133.13,133.72,134.08,134.27,146.93,147.20$ $\left(\mathrm{C}_{\text {arom }}\right) ; 166.65,166.93,170.22(\mathrm{CO})$. Mass spectrum, $m / z\left(I_{\mathrm{rel}}, \%\right): 588 M^{+}(10), 345$ (43), 221 (35), 176 (40), 144 (100), 57 (64). Found, \%: С 71.13; H 5.36; N 9.43. $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C 71.40; H 5.47; N 9.51\%. M 588.69.
N^{2}-Cyclohexyl- N^{1}, N^{1}-bis(1-naphthyl)-2-(4-nitro-phenyl)-1,1,2-ethanetricarboxamide (Vh). Pink crystals. Yield $0.512 \mathrm{~g}(83 \%), \mathrm{mp} 289-290^{\circ} \mathrm{C}$. IR spectrum (KBr), $v, \mathrm{~cm}^{-1}: 3385,3255(\mathrm{NH}) ; 1666,1627$ (C=O); $1514,1345\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: 0.97-1.74 m (10H, $\left.\mathrm{CH}_{2}\right), 3.49 \mathrm{~m}(1 \mathrm{H}, \mathrm{NCH})$, 4.73 d and $4.89 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=11.17 \mathrm{~Hz}\right), 7.40-$ $8.29 \mathrm{~m}\left(18 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.13 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CyNH},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}), 10.02 \mathrm{~s}$ and $10.09 \mathrm{~s}(2 \mathrm{H}, \mathrm{PhNH}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- d_{6}), δ_{C}, ppm: 24.76, 24.83, 25.63, 32.43, $32.73\left(\mathrm{CH}_{2}\right) ; 48.27(\mathrm{NCH}) ; 51.09,57.41(\mathrm{CH})$; $122.30,122.39,122.56,123.04,123.96,124.35$, $125.99,126.14,126.47,126.58,126.67,128.21$, $128.47,128.65,128.75,130.27,133.65,134.07$, $134.26,146.69,147.22\left(\mathrm{C}_{\text {arom }}\right) ; 166.59,166.86,169.82$ (CO). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 614 M^{+}(5), 515$ (3), 471 (17), 303 (20), 221 (25), 143 (100). Found, \%: C 71.45; H 5.44; N 8.93. $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$. Calculated, \%: C 72.29; H 5.57; N 9.11. M 614.73.

The authors gratefully acknowledge financial support from the Research Council and Medicinal Plant Research Institute of the Shahid Beheshti University.

REFERENCES

1. Chen, B.-C., Heterocycles, 1991, vol. 32, p. 529.
2. McNab, H., Chem. Soc. Rev., 1978, vol. 7, p. 345.
3. Stevenson, R. and Weber, J.V., Heterocycles, 1988, vol. 27, p. 1929.
4. Bitter, J., Leitich, J., Partale, H., Polansky, O.E., Riemer, W., Ritter-Thomas, U., Schlamann, B., and Stilkerieg, B., Chem. Ber., 1980, vol. 113, p. 1020.
5. Tietze, L.F. and Kiedrowski, G.V., Tetrahedron Lett., 1981, vol. 22, p. 219.
6. Takano, S., Satoh, S., and Ogasawara, K., Heterocycles, 1985, vol. 23, p. 41.
7. Shaabani, A. and Farrokhzad, F., J. Chem. Res., Synop., 1997, p. 344.
8. Yavari, I., Shaabani, A., and Maghsoodlou, M.T., Monatsh. Chem., 1997, vol. 128, p. 697.
9. Yavari, I., Shaabani, A., Asghari, S., Olmsted, M., and Safari, N., J. Fluorine Chem., 1997, vol. 86, p. 77.
10. Shaabani, A., Ajabi, S., Farrokhzad, F., and Bijanzadeh, H.M., J. Chem. Res., Synop., 1999, p. 582.
11. Shaabani, A., Yavari, I., Teimouri, M.B., Bazgir, A., and Bijanzadeh, H.M., Tetrahedron, 2001, vol. 57, p. 1375.
12. Shaabani, A. and Teimouri, M.B., J. Chem. Res., Synop., 2002, p. 433.
13. Hiratani, K., US Patent no. $5071989,1991$.
14. Mohapatara, P.K., Sriram, S., and Badheka, L.P., Sep. Sci. Technol., 2000, vol. 35, p. 39.
15. Chan Gabriel, Y.S., Drew, M.G.B., and Madic, C., J. Chem. Soc., Dalton Trans., 1997, p. 649.
16. Iveson, P.B., Drew, M.G.B., and Madic, C., J. Chem. Soc., Dalton Trans., 1999, p. 3605.
17. Hiratani, K. and Taguchi, K., Chem. Lett., 1989, p. 2073.
18. Darling, C.M., US Patent no. 4537781, 1985.
19. Jursic, B.S., Tetrahedron Lett., 2000, vol. 41, p. 5325.
20. Beckwith, A.L.J., The Chemistry of Amides., Zabicky, J., Ed., London: Intersci., 1970, p. 74.
21. Hedge, J.A., Kruse, C.W., and Snyder, H.R., J. Org. Chem., 1961, vol. 26, p. 3166.
22. Bihlmayer, G.A., Derflinger, G., Derkosch, J., and Polansky, O.E., Monatsh. Chem., 1967, vol. 98, p. 564.

[^0]: $\mathrm{I}, \mathrm{R}^{1}=t-\mathrm{Bu}(\mathbf{a})$, cyclohexyl (b); II, $\mathrm{R}^{2}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{a}), \mathrm{MeO}(\mathbf{b}) ;$ III, $\mathrm{Ar}=\mathrm{Ph}(\mathbf{a}), 3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{b}) ; \mathbf{I V}, \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, $\mathrm{Ar}=\mathrm{Ph}(\mathbf{a}) ; \mathrm{R}^{1}=$ cyclohexyl, $\mathrm{R}^{2}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{Ar}=\mathrm{Ph}(\mathbf{b}) ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{Ar}=3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{c}) ; \mathrm{R}^{1}=$ cyclohexyl, $\mathrm{R}^{2}=$ $4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{Ar}=3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{d}) ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{MeO}, \mathrm{Ar}=\mathrm{Ph}(\mathbf{e}) ; \mathrm{R}^{1}=$ cyclohexyl, $\mathrm{R}^{2}=\mathrm{MeO}, \mathrm{Ar}=\mathrm{Ph}(\mathbf{f})$.

[^1]: * The original article was submitted in English.

