An Efficient One-Pot Synthesis of Triamides and Amidodiesters*

A. Shaabani¹, M. B. Teimouri¹, and H. R. Bijanzadeh²

¹ Department of Chemistry, Shahid Beheshti University, 1983963113 Tehran, Iran fax: +(9821)2403041; e-mail: a-shaabani@cc.sbu.ac.ir

² Department of Chemistry, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran

Received April 23, 2003

Abstract—An efficient one-pot procedure has been proposed for the synthesis of compounds containing three carboxamide groups or one carboxamide and two ester groups. The procedure is based on three-component condensation of alkyl isocyanides with 5-alkylidene- or 5-arylmethylene-substituted Meldrum's acids in the presence of such nucleophiles as phenols and amines.

In the recent years, chemistry of 5-alkylidene- and 5-arylmethylene-substituted Meldrum's acid derivatives has attracted much attention owing to their potential synthetic utility and diversity of reactions [1, 2]. These compounds are useful intermediates in cycloaddition reactions not only as good dienophiles but also as good oxy-dienes in hetero-Diels-Alder reactions [3–6]. In continuation of our recent studies on [1+4]-cycloadditions of isocyanides to activated α,β unsaturated carbonyl compounds which are capable of adopting a cisoid configuration [7-12], the present communication reports on reactions of alkyl isocyanides I with 5-methoxymethylene- and 5-(4-nitrobenzylidene)-substituted Meldrum's acids as electrondeficient oxy-dienes in the presence of phenols and amines as nucleophiles. We found that these reactions occur under mild conditions (at room temperature) in the absence of a catalyst to afford highly functionalized triamides and amidodiesters. The products and their derivatives can find application in various

fields, such as complex formation with metals [13–17] and pharmaceutical chemistry [18, 19].

Three-component condensation of alkyl isocyanides I with compounds II in the presence of phenols **III** in methylene chloride at room temperature gave amdodiesters IV in fairly high yields (Scheme 1). The formation of compounds IV follows from the ¹H and ¹³C NMR spectra of the crude products. No other compounds were detected in the reaction mixtures by NMR spectroscopy. The structure of compounds IVa-IVf was deduced from their elemental analyses and IR and ¹H and ¹³C NMR spectra. The mass spectra of IVa-IVf displayed the molecular ion peaks with appropriate m/z values. The ¹H NMR spectrum of **IVa** contained a signal at δ 1.26 ppm from the *tert*-butyl group and signals at δ 4.31 and 4.76 ppm (AX system, $J_{AX} = 11.3$ Hz) from the two CH protons. The NH proton resonates at δ 5.54 ppm, and signals in the δ range from 6.69 to 8.24 ppm belong to the aromatic protons. In the proton-decoupled ¹³C NMR spectrum

I, $R^1 = t$ -Bu (a), cyclohexyl (b); II, $R^2 = 4$ -O₂NC₆H₄ (a), MeO (b); III, Ar = Ph (a), 3-O₂NC₆H₄ (b); IV, $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = Ph (a); $R^1 = cyclohexyl$, $R^2 = 4$ -O₂NC₆H₄, Ar = Ph (b); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (c); $R^1 = cyclohexyl$, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄, Ar = 3-O₂NC₆H₄ (d); $R^1 = t$ -Bu, $R^2 = 4$ -O₂NC₆H₄ (d); $R^2 = 4$ -O

^{*} The original article was submitted in English.

I, R = t-Bu (a), cyclohexyl (b); III, Ar = Ph (c), $4-O_2NC_6H_4$ (d), $4-MeC_6H_4$ (e), 1-naphthyl (f); V, R = t-Bu, Ar = Ph (a); R = cyclohexyl, Ar = Ph (b); R = t-Bu, Ar = $4-O_2NC_6H_4$ (c); R = cyclohexyl, Ar = $4-O_2NC_6H_4$ (d); R = t-Bu, Ar = $4-MeC_6H_4$ (e); R = cyclohexyl, Ar = $4-MeC_6H_4$ (f); R = t-Bu, Ar = 1-naphthyl (g); R = cyclohexyl, Ar = 1-naphthyl (h).

of **IVa** we observed 19 distinct signals in agreement with the assumed structure. The ¹H and ¹³C NMR spectra of compounds **IVb–IVf** were similar to those obtained for **IVa**, except for signals from the alkylamino group (R), ester groups, and R' which exhibited characteristic signals with appropriate chemical shifts.

Treatment of alkyl isocyanides I with 5-(4-nitrobenzylidene)-substituted Meldrum's acid IIa in the presence of amines at room temperature gave N²-alkyl-2-(4-nitrophenyl)-N¹,N¹-diaryl-1,1,2-ethanetricarboxamides V in high yields (Scheme 2). The ¹H NMR spectrum of Va contained a narrow singlet at δ 1.28 ppm, which was readily recognized as arising from the *tert*-butyl group and an AX pattern $(J_{AX} =$ 8.1 Hz) from the two methine protons at δ 4.42 and 4.79 ppm. A broadened singlet (δ 7.96 ppm) was observed for the NH group attached to t-Bu, and protons of the phenyl ring appeared as multiplets in the aromatic region (§ 7.03-7.78 ppm). Two PhNH protons gave a broad singlet at δ 9.98 ppm. The ¹³C NMR spectrum of Va (recorded with decoupling from protons) consists of 18 distinct signals, in agreement with the assigned structure. The ¹H and ¹³C NMR spectra of compounds Vb-Ve, Vg, and Vh were similar to those obtained for Va, except for signals from the alkyl and aryl groups on the nitrogen atoms. We failed to record ¹H and ¹³C NMR spectra of compound Vf because of its poor solubility.

Under analogous conditions, the reaction of 5-methoxymethylene-2,2-dimethyl-1,3-dioxane-4,6-dione (**IIb**) with alkyl isocyanides **I** in the presence of aniline afforded the corresponding 5-phenylaminomethylene derivative **IIc** (R' = PhNH) (Scheme 3). This result may be interpreted in terms of highly electron-rich nature of the oxy-diene system in **IIc**, which hampers its subsequent reaction at the electronrich carbon atom of isocyanide.

Scheme 4 shows a possible mechanism of the above reactions. Taking into account that compound **IIc**, being an electron-rich heterodiene, failed to react with isocyanides, the first step of the process may be [1+4]-cycloaddition of alkyl isocyanide to electron-deficient heterodiene **II** with formation of imino-lactone intermediate **VI**. The subsequent reaction of **VI** with nucleophile according to pathway *a* or *b* results in formation of the same product **IV** or **V**.

In summary, the reactions of 5-arylmethylene- and 5-methoxymethylene-substituted Meldrum's acids with alkyl isocyanides in the presence of phenols and amines smoothly occur under mild conditions in the absence of a catalyst to afford the corresponding 1,1,2-ethanetricarboxamides and diaryl carbamoylmethylmalonates in high yields. The proposed procedure offers a convenient alternative to multistep approaches [20]. The products attract interest as potential polyfunctional ligands for organometallic chemistry.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 40 No. 7 2004

EXPERIMENTAL

The melting points were determined on an Electrothermal 9100 apparatus and are uncorrected. The elemental analyses were obtained using a Heraeus CHN-O-Rapid analyzer. The mass spectra (70 eV) were recorded on a Finnigan MAT-8430 mass spectrometer. The IR spectra were obtained on a Shimadzu IR-470 spectrometer. The ¹H and ¹³C NMR spectra were measured on a Bruker DRX-500 Avance instrument at 500.13 and 125.77 MHz, respectively, using CDCl₃ or DMSO- d_6 as solvent. The chemicals used in this work were purchased from Fluka (Buchs, Switzerland). 2,2-Dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6-dione (**IIa**) and 5-methoxymethylene-2,2-dimethyl-1,3-dioxane-4,6-dione (**IIb**) were synthesized by the procedures described in [21, 22].

Diphenyl 2-[2-tert-butylamino-1-(4-nitrophenyl)-2-oxoethyl]malonate (IVa). A solution of 0.084 g (1 mmol) of *tert*-butyl isocyanide (**Ia**) in 2 ml of methylene chloride was added dropwise over a period of 10 min to a solution of 0.280 g (1 mmol) of 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6-dione (**IIa**) and 0.197 g (2.1 mmol) of phenol (**IIIa**) in 15 ml of methylene chloride under stirring (with a magnetic stirrer) at 0°C. The mixture was allowed to warm up to room temperature and was stirred for 5 h. The solution was concentrated, and the colorless crystalline product was filtered off and recrystallized from methylene chloride-hexane, 1:1. Yield 0.420 g (85%), mp 163–164°C. IR spectrum (KBr), v, cm⁻¹: 3380 (NH); 1759, 1730, 1672 (C=O); 1519, 1340 (NO₂). ¹H NMR spectrum (CDCl₃, Me₄Si), δ, ppm: 1.26 s (9H, CMe₃), 4.31 d and 4.76 d (2H, CH, ${}^{3}J_{\text{HH}} =$ 11.25 Hz), 5.54 s (1H, NH), 6.69–7.42 m (10H, C₆H₅), 7.69 d and 8.24 d (4H, C₆H₄NO₂, ${}^{3}J_{HH} = 6.95$ Hz). ¹³C NMR spectrum (CDCl₃, Me₄Si), $\delta_{\rm C}$, ppm: 28.49 (CMe₃); 52.02 (CMe₃); 52.53, 55.27 (CH); 120.80, 121.20, 124.18, 126.47, 126.52, 129.45, 129.60, 129.63, 143.29, 147.85, 149.86, 150.41 (C_{arom}); 165.87, 166.26, 168.45 (CO). Mass spectrum, m/z, $(I_{\rm rel}, \%)$: 588 M^+ (10), 345 (43), 221 (35), 176 (40), 144 (100), 57 (64). Found, %: C 65.98; H 5.31; N 5.60. C₂₇H₂₆N₂O₇. Calculated, %: C 66.10; H 5.34; N 5.71. M 490.55.

Compounds **IVb–IVf** were synthesized in a similar way.

Diphenyl 2-[2-cyclohexylamino-1-(4-nitrophenyl)-2-oxoethyl]malonate (IVb). Colorless crystals. Yield 0.440 g (85%), mp 168–169°C. IR spectrum (KBr), v, cm⁻¹: 3315 (NH); 1750, 1637 (CO); 1506, 1338 (NO₂). ¹H NMR spectrum (CDCl₃, Me₄Si), δ, ppm: 1.05–1.69 m (10H, CH₂), 3.70 m (1H, NCH), 4.35 d and 4.81 d (2H, CH, ³*J*_{HH} = 11.2 Hz), 5.55 d (1H, NH, ³*J*_{HH} = 8.00 Hz), 6.68–7.42 m (10H, C₆H₅), 7.69 d and 8.24 d (4H, C₆H₄NO₂, ³*J*_{HH} = 8.50 Hz). ¹³C NMR spectrum (CDCl₃, Me₄Si), δ, ppm: 24.64, 24.69, 25.32, 32.54, 32.70 (CH₂); 49.08 (NCH); 52.00, 55.16 (CH); 120.78, 121.20, 124.16, 126.48, 126.53, 129.61, 129.63, 143.09, 147.87, 149.85, 150.37 (C_{arom}); 165.81, 166.21, 168.32 (CO). Mass spectrum, *m*/*z* (*I*_{rel}, %): 517 [*M* + H]⁺ (3), 424 (27), 329 (13), 247 (18), 176 (22), 94 (100). Found, %: C 66.75; H 5.56; N 5.45. C₂₉H₂₈N₂O₇. Calculated, %: C 67.42; H 5.46; N.42. *M* 516.59.

Bis(3-nitrophenyl) 2-[2-tert-butylamino-1-(4nitrophenyl)-2-oxoethyl]malonate (IVc). Yellow crystals. Yield 0.468 g (80%), mp 175–176°C. IR spectrum (KBr), v, cm⁻¹: 3310 (NH); 1749, 1674 (CO); 1532, 1351 (NO₂). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.18 s (9H, CMe₃), 4.66 d and 4.86 d (2H, CH, ${}^{3}J_{HH} =$ 10.5Hz), 7.37 d (1H, NH, ${}^{3}J_{HH} = 8.17$ Hz), 7.53– 8.29 m (12H, H_{arom}). ${}^{13}C$ NMR spectrum (DMSO- d_{6}), δ_C, ppm: 28.60 (CMe₃); 51.11 (CMe₃); 51.55, 54.68 (CH); 117.01, 117.34, 122.02, 124.06, 124.23, 128.69, 124.84, 129.33, 130.14, 131.66, 131.74, 144.76, 147.05, 147.98, 148.68, 148.84, 150.08, 150.64 (Carom); 165.81, 165.97, 168.75 (CO). Mass spectrum, m/z ($I_{\rm rel}$, %): 580 M^+ (2), 479 (8), 442 (10), 303 (15), 277 (35), 221 (50), 176 (25), 139 (90), 57 (100). Found, %: C 56.03; H 4.27; N 9.81. C₂₇H₂₄N₄O₁₁. Calculated, %: C 55.85; H 4.16; N 9.65. M 580.57.

Bis(3-nitrophenyl) 2-[2-cyclohexylamino-1-(4nitrophenyl)-2-oxoethyl]malonate (IVd). Yellow crystals. Yield 0.496 g (81%), mp 151-152°C. IR spectrum (KBr), v, cm⁻¹: 3285 (NH); 1771, 1750, 1672 (C=O); 1527, 1349 (NO₂). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 1.05–1.73 m (10H, CH₂), 3.85 m (1H, NCH), 4.63 d and 4.91 d (2H, CH, ${}^{3}J_{\text{HH}} = 1.1 \text{ Hz}$), 7.20 d (1H, NH, ${}^{3}J_{HH} = 8.15$ Hz), 7.42–8.21 m (12H, H_{arom}). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 24.81, 24.89, 25.34, 32.52, 32.76 (CH₂); 45.39 (NCH); 48.31 and 51.59 (CH); 110.04, 114.27, 117.48, 121.38, 122.87, 124.09, 124.22, 129.12, 129.41, 129.93, 131.09, 131.45, 146.24, 147.11, 147.26, 147.76, 148.73, 149.16 (C_{arom}); 169.80, 170.09, 176.30 (C=O). Mass spectrum, m/z (I_{rel} , %): 606 M^+ (3), 506 (5), 303 (37), 221 (854), 166 (25), 150 (51), 55 (100). Found, %: C 58.46; H 5.00; N 9.20. C₂₉H₂₆N₄O₁₁. Calculated, %: C 57.42; H 4.32; N 9.23. M 606.61.

Diphenyl 2-[2-tert-butylamino-1-methoxy-2-oxoethyl]malonate (IVe). Red oily substance. Yield 0.295 g (74%). IR spectrum (KBr), v, cm⁻¹: 3370 (NH); 1750, 1691 (C=O). ¹H NMR spectrum (CDCl₃, Me₄Si), δ , ppm: 1.36 s (9H, CMe₃), 3.52 s (3H, OCH₃), 4.47 m (2H, CH, *AB* system, ³J_{HH} = 4.4 Hz), 6.49 s (1H, NH), 6.83–7.42 m (10H, H_{arom}). ¹³C NMR spectrum (CDCl₃, Me₄Si), $\delta_{\rm C}$, ppm: 28.60 (CMe₃); 50.90 (CMe₃); 55.12 (OCH₃); 59.96 (CH); 78.71 (OCH); 114.69, 120.11, 121.37, 121.40, 126.88, 126.95, 127.13, 129.33, 130.04, 151.26, 151.73, 155.10 (C_{arom}); 165.22, 165.93, 169.20 (C=O). Mass spectrum, *m*/*z* (*I*_{rel}, %): 400 *M*⁺ (10), 368 (31), 338 (17), 275 (22), 247 (15), 217 (28), 124 (33), 94 (100), 57 (95). Found, %: C 66.33; H 6.21; N 3.61. C₂₂H₂₅NO₆. Calculated, %: C 66.14; H 6.30; N 3.50. *M* 399.48.

Diphenyl 2-[2-cyclohexylamino-1-methoxy-2oxoethyl]malonate (IVf). Red oily substance. Yield 0.303 g (71%). IR spectrum (KBr), v, cm^{-1} : 3355 (NH), 1748, 1695 (C=O). ¹H NMR spectrum (CDCl₃, Me₄Si), δ, ppm: 1.10–1.89 m (10H, CH₂), 3.61 s (3H, OCH₃), 3.81 m (1H, NCH), 4.52 m (2H, CH, AB system, ${}^{3}J_{\text{HH}} = 4.25$ Hz), 6.25 d (1H, NH, ${}^{3}J_{\text{HH}} =$ 8.50 Hz), 6.82-7.37 m (10H, Harom). ¹³C NMR spectrum (CDCl₃, Me₄Si), δ, ppm: 24.64, 24.77, 25.38, 32.75, 32.94 (CH₂); 48.23 (NCH); 54.55 (OCH₃); 60.10 (CH); 79.68 (OCH); 115.47, 119.86, 121.35, 121.37, 126.28, 126.30, 129.42, 129.52, 150.42, 150.48, 156.54 (Carom); 164.91, 165.76, 168.39 (CO). Mass spectrum, m/z (I_{rel} ,%): 426 M^+ (7), 364 (24), 332 (33), 300 (25), 270 (42), 238 (35), 156 (60), 117 (29), 94 (100), 83 (41). Found, %: C 67.03; H 6.11; N 3.49. C₂₄H₂₇NO₆. Calculated, %: C 67.74; H 6.39; N 3.29. M 425.52.

 N^2 -tert-Butyl-2-(4-nitrophenyl)- N^1 , N^1 -diphenyl-1,1,2-ethanetricarboxamide (Va). A solution of 0.084 g (1 mmol) of tert-butyl isocyanide Ia in 2 ml of methylene chloride was added dropwise over a period of 10 min to a solution of 0.280 g (1 mmol) of 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6dione (IIa) and 2 ml of aniline (IIIc) in 15 ml of methylene chloride under stirring (magnetic stirrer) at 0°C. The mixture was allowed to warm up to room temperature and was stirred for 5 h. The solution was concentrated, and the colorless crystalline product was filtered off and washed with diethyl ether. Yield 0.440 g (90%), mp 300-301°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 3305 (NH); 1672, 1632, 1603 (C=O); 1510, 1349 (NO₂). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 1.21 s (9H, CMe₃), 4.42 d and 4.79 d (2H, CH, ${}^{3}J_{\text{HH}} = 8.13$ Hz), 7.96 br.s (1H, *t*-BuN**H**), 7.03– 8.20 (14H, H_{arom}), 9.98 s (2H PhNH). ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 28.23 (CMe₃); 50.21 (CMe₃); 50.60 and 58.04 (CH); 119.21, 123.08, 123.47, 123.63, 128.50, 128.63, 129.33, 138.24, 138.69, 146.34, 146.51 (C_{arom}); 164.71, 165.30, 169.63 (CO). Mass spectrum, m/z (I_{rel} , %): 488 M^+ (3), 396 (15), 340 (10), 323 (13), 295 (20), 269 (53), 176 (17), 130 (15), 93 (100), 77 (25), 57 (64). Found, %: C 66.06; H. 5.49; N. 11.31. C₂₇H₂₈N₄O₅. Calculated, %: C 66.37; H.77; N 11.46. *M* 488.57.

 N^2 -Cyclohexyl-2-(4-nitrophenyl)- N^1 , N^1 -diphenyl-1,1,2-ethanetricarboxamide (Vb). Colorless crystals. Yield 0.476 g (92%), mp 304-305°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 3270 (NH); 1668, 1660, 1627 (C=O); 1514, 1345 (NO₂). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 0.93–1.62 m (10H, CH₂), 3.35 m (1H, NCH), 4.37 d and 4.65 d (2H, CH, ${}^{3}J_{HH} = 9.2$ Hz), 6.98-8.16 m (14H, Harom), 8.21 s (1H, CyNH), 9.83 s and 9.92 s (2H, PhNH). ¹³C NMR spectrum (DMSO-*d*₆), δ_C, ppm: 24.73, 24.80, 25.58, 32.37, 32.63 (CH₂); 48.15 (NCH); 50.52, 58.23 (CH); 119.63, 119.69, 123.81, 124.17, 124.33, 129.25, 129.93, 138.61, 139.06, 146.52, 147.05 (Carom); 165.15, 65.73, 169.68 (CO). Mass spectrum, m/z (I_{rel} , %): 515 [M + H]⁺ (3), 410 (5), 346 (2), 283 (30), 107 (100), 93 (44). Found, %: C 67.29; H 5.89; N 10.82. C₂₉H₃₀N₄O₅. Calculated, %: C 67.68; H 5.87; N 10.88. M 514.61.

 N^2 -(tert-Butyl)- N^1 , N^1 ,2-tris(4-nitrophenyl)-1,1,2ethanetricarboxamide (Vc). Colorless crystals. Yield 0.468 g (81%), mp 267–268°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 3292 (NH); 1687, 1630 (C=O); 1508, 1348 (NO₂). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.10 s (9H, CMe₃), 4.39 d and 4.68 d (2H, CH, ${}^{3}J_{HH} =$ 11.25 Hz), 7.61 t.d and 8.24 t.d (12H, H_{arom}, ${}^{3}J_{\rm HH} =$ 9 Hz), 8.02 s (1H, t-BuNH), 10.43 s and 10.59 s (2H, NH). ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 28.64 (CMe₃); 50.74 (CMe₃); 51.23, 58.81 (CH); 119.73, 123.86, 125.33, 125.51, 129.93, 143.10, 143.18, 144.45, 145.05, 146.02, 147.12 (C_{arom}); 165.93, 166.35, 169.77 (C=O). Mass spectrum, m/z (I_{rel} , %): 579 $[M + H]^+$ (2), 384 (27), 277 (17), 220 (48), 176 (50), 138 (99), 57 (100). Found, %: C.73; H 4.55; N 14.23. C₂₇H₂₆N₆O₉. Calculated, %: C 56.04; H 4.52; N 14.52. M578.59.

*N*²-Cyclohexyl-*N*¹,*N*¹,2-tris(4-nitrophenyl)-1,1,2ethanetricarboxamide (Vd). Colorless crystals. Yield 0.492 g (82%), mp 270–272°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 3345 (NH); 1688, 1661 (C=O); 1505, 1343 (NO₂). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 0.91–1.63 m (10H, CH₂), 3.39 m (1H, NCH), 4.45 d and 4.66 d (2H, CH, ³*J*_{HH} = 11.2 Hz), 7.60–8.24 6 d (12H, H_{arom}, ${}^{3}J_{\text{HH}} = 8.9$ Hz), 8.11 d (1H, CyNH, ${}^{3}J_{\text{HH}} = 8.8$ Hz), 10.39 s and 10.62 s (2H, NH). 13 C NMR spectrum (DMSO- d_6), δ_{C} , ppm: 24.71, 24.78, 25.55, 32.32, 32.59 (CH₂); 48.25 (NCH); 50.72, 58.63 (CH); 119.74, 123.89, 125.34, 125.52, 130.01, 143.13, 143.22, 144.40, 144.99, 145.77, 147.17 (C_{arom}); 165.86, 166.30, 169.37 (C=O). Mass spectrum, *m*/*z* (*I*_{rel}, %): 604 *M*⁺ (2), 466 (21), 346 (21), 302 (54), 221 (55), 176 (41), 138 (100), 108 (97). Found, %: C 57.75; H 4.81; N 14.02. C₂₉H₂₈N₆O₉. Calculated, %: C 57.60; H 4.66; N 13.89. *M* 604.63.

 N^2 -tert-Butyl- N^1 , N^1 -bis(4-methylphenyl)-2-(4nitrophenyl)-1,1,2-ethanetricarboxamide (Ve). Colorless crystals. Yield 0.440 g (85%), mp 316-317°C. IR spectrum (KBr), v, cm⁻¹: 3260 (NH); 1688, 1672, 1637 (C=O); 1511, 1348 (NO₂). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 1.10 s (9H, CMe₃), 1.92 s and 2.01 s (6H, 2CH₃), 4.21 and 4.63 d (2H, CH, ${}^{3}J_{\text{HH}} = 8.2$ Hz), 7.00–8.15 m (12H, H_{arom}), 7.95 s (1H, t-BuNH), 9.77 s (2H, NH). ¹³C NMR spectrum $(DMSO-d_6)$, δ_C , ppm: 15.64, 20.91 (CH_3) ; 28.70 (CMe₃); 50.21 (CMe₃); 51.08, 58.42 (CH); 119.71, 123.75, 128.46, 128.51, 129.16, 129.55, 129.70, 129.88, 133.01, 133.21, 133.40, 133.46, 136.25, 136.67, 146.80, 147.07 (Carom); 165.25, 165.67, 170.10 (CO). Mass spectrum, m/z (I_{rel} , %): 516 M^+ (15), 410 (19), 337 (23), 283 (88), 176 (24), 107 (100), 57 (79). Found, %: C 67.60; H 6.31; N 10.96. C₂₉H₃₂N₄O₅. Calculated, %: C 67.42; H 6.24; N 10.84. M 516.63.

 N^2 -Cyclohexyl- N^1 , N^1 -bis(4-methylphenyl)-2-(4nitrophenyl)-1,1,2-ethanetricarboxamide (Vf). Colorless crystals. Yield 0.472 g (87%), mp 319– 320°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 3420, 3255 (NH); 1686, 1664, 1642 (C=O); 1508, 1344 (NO₂). Mass spectrum, m/z (I_{rel} , %): 542 M^+ (15), 436 (39), 329 (55), 283 (20), 107 (100). Found, %: C 68.71; H 6.34; N 10.34. C₃₁H₃₄N₄O₅. Calculated, %: C.61; H 6.31; N 10.32. *M* 542.66. We failed to record ¹H and ¹³C NMR spectra of Vf because of its poor solubility.

 N^2 -(*tert*-Butyl)- N^1 , N^1 -bis(1-naphthyl)-2-(4-nitrophenyl)-1,1,2-ethanetricarboxamide (Vg). Pink crystals. Yield 0.488 g (83%), mp 290–291°C. IR spectrum (KBr), v, cm⁻¹: 3270 (NH); 1674, 1658, 1634 (C=O); 1514, 1344 (NO₂). ¹H NMR spectrum (DMSO- d_6), δ, ppm: 1.19 s (9H, CMe₃), 4.78 m (2H, CH, *AB* system, ${}^3J_{\rm HH} = 11.45$ Hz), 7.29–8.33 m (18H, H_{arom}), 8.05 s (1H, *t*-BuNH), 10.01 s and 10.06 s (2H, NH). 13 C NMR spectrum (DMSO- d_6), δ_C, ppm: 28.80 (CMe₃); 50.73 (CMe₃); 51.52 and 57.64 (CH); 122.41,

122.52, 122.58, 123.18, 126.01, 126.14, 126.52, 126.59, 126.68, 128.29, 128.65, 128.71, 130.24, 133.13, 133.72, 134.08, 134.27, 146.93, 147.20 (C_{arom}); 166.65, 166.93, 170.22 (CO). Mass spectrum, *m*/*z* (I_{rel} , %): 588 *M*⁺ (10), 345 (43), 221 (35), 176 (40), 144 (100), 57 (64). Found, %: C 71.13; H 5.36; N 9.43. C₃₅H₃₂N₄O₅. Calculated, %: C 71.40; H 5.47; N 9.51%. *M* 588.69.

 N^2 -Cyclohexyl- N^1 , N^1 -bis(1-naphthyl)-2-(4-nitrophenyl)-1,1,2-ethanetricarboxamide (Vh). Pink crystals. Yield 0.512 g (83%), mp 289–290°C. IR spectrum (KBr), v, cm⁻¹: 3385, 3255 (NH); 1666, 1627 (C=O); 1514, 1345 (NO₂). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 0.97-1.74 m (10H, CH₂), 3.49 m (1H, NCH), 4.73 d and 4.89 d (2H, CH, ${}^{3}J_{\rm HH} = 11.17$ Hz), 7.40– 8.29 m (18H, H_{arom}), 8.13 d (1H, CyNH, ${}^{3}J_{HH} =$ 7.6 Hz), 10.02 s and 10.09 s (2H, PhNH). 13 C NMR spectrum (DMSO-*d*₆), δ_C, ppm: 24.76, 24.83, 25.63, 32.43, 32.73 (CH₂); 48.27 (NCH); 51.09, 57.41 (CH); 122.30, 122.39, 122.56, 123.04, 123.96, 124.35, 125.99, 126.14, 126.47, 126.58, 126.67, 128.21, 128.47, 128.65, 128.75, 130.27, 133.65, 134.07, 134.26, 146.69, 147.22 (Carom); 166.59, 166.86, 169.82 (CO). Mass spectrum, m/z (I_{rel} , %): 614 M^+ (5), 515 (3), 471 (17), 303 (20), 221 (25), 143 (100). Found, %: C 71.45; H 5.44; N 8.93. C₃₇H₃₄N₄O₅. Calculated, %: C 72.29; H 5.57; N 9.11. M 614.73.

The authors gratefully acknowledge financial support from the Research Council and Medicinal Plant Research Institute of the Shahid Beheshti University.

REFERENCES

- 1. Chen, B.-C., Heterocycles, 1991, vol. 32, p. 529.
- 2. McNab, H., Chem. Soc. Rev., 1978, vol. 7, p. 345.

- 3. Stevenson, R. and Weber, J.V., *Heterocycles*, 1988, vol. 27, p. 1929.
- Bitter, J., Leitich, J., Partale, H., Polansky, O.E., Riemer, W., Ritter-Thomas, U., Schlamann, B., and Stilkerieg, B., *Chem. Ber.*, 1980, vol. 113, p. 1020.
- 5. Tietze, L.F. and Kiedrowski, G.V., *Tetrahedron Lett.*, 1981, vol. 22, p. 219.
- Takano, S., Satoh, S., and Ogasawara, K., *Heterocycles*, 1985, vol. 23, p. 41.
- Shaabani, A. and Farrokhzad, F., J. Chem. Res., Synop., 1997, p. 344.
- 8. Yavari, I., Shaabani, A., and Maghsoodlou, M.T., Monatsh. Chem., 1997, vol. 128, p. 697.
- Yavari, I., Shaabani, A., Asghari, S., Olmsted, M., and Safari, N., J. Fluorine Chem., 1997, vol. 86, p. 77.
- 10. Shaabani, A., Ajabi, S., Farrokhzad, F., and Bijanzadeh, H.M., J. Chem. Res., Synop., 1999, p. 582.
- 11. Shaabani, A., Yavari, I., Teimouri, M.B., Bazgir, A., and Bijanzadeh, H.M., *Tetrahedron*, 2001, vol. 57, p. 1375.
- 12. Shaabani, A. and Teimouri, M.B., *J. Chem. Res., Synop.*, 2002, p. 433.
- 13. Hiratani, K., US Patent no. 5071989, 1991.
- 14. Mohapatara, P.K., Sriram, S., and Badheka, L.P., *Sep. Sci. Technol.*, 2000, vol. 35, p. 39.
- 15. Chan Gabriel, Y.S., Drew, M.G.B., and Madic, C., J. Chem. Soc., Dalton Trans., 1997, p. 649.
- 16. Iveson, P.B., Drew, M.G.B., and Madic, C., J. Chem. Soc., Dalton Trans., 1999, p. 3605.
- 17. Hiratani, K. and Taguchi, K., Chem. Lett., 1989, p. 2073.
- 18. Darling, C.M., US Patent no. 4537781, 1985.
- 19. Jursic, B.S., Tetrahedron Lett., 2000, vol. 41, p. 5325.
- Beckwith, A.L.J., *The Chemistry of Amides.*, Zabicky, J., Ed., London: Intersci., 1970, p. 74.
- 21. Hedge, J.A., Kruse, C.W., and Snyder, H.R., J. Org. Chem., 1961, vol. 26, p. 3166.
- 22. Bihlmayer, G.A., Derflinger, G., Derkosch, J., and Polansky, O.E., *Monatsh. Chem.*, 1967, vol. 98, p. 564.